Random copolymers form crystalline structures with supramolecular polymers

Eric Bruckner
Tine Curk
Luka Dordević
Ziwei Wang
Ruomeng Qiu
Adam Dannenhoffer
Hiroaki Sai
Liam C. Palmer
Erik Luijten
Samuel I. Stupp

1. Chemistry, Northwestern University, Evanston, IL, United States.
2. Graduate Program in Applied Physics, Northwestern University, Evanston, IL, United States.
3. Physics and Astronomy, Northwestern University, Evanston, IL, United States.
4. Materials Science and Engineering, Northwestern University, Evanston, IL, United States.
5. Simpson Querrey Institute, Northwestern University, Evanston, IL, United States.

The ordering of polymer chains into well-defined crystal lattices remains a challenge due to kinetic barriers during crystallization and the difficult synthesis of structurally precise macromolecules. We report here on a strategy where monomers of a supramolecular polymer can be used to promote the crystallization of covalent polymers that lack the sequence and stereochemical control to crystallize on their own. Synchrotron X-ray scattering, absorbance spectroscopy, and coarse-grained molecular dynamics (CG-MD) simulations reveal that the supramolecular monomers co-crystallize with complementary motifs on the covalent polymer to form nanoscale structures under aqueous conditions. Transmission electron microscopy and CG-MD simulations show that this method can also be used to tune the size and shape of these nanostructures through a competition between the entropy of polymer chain folding and the formation enthalpy of an extended crystalline lattice. When these hybrid covalent-supramolecular polymers are used as photosensitizers in aqueous catalysis, we observe an unexpected enhancement in catalysis linked to their structure.